Matematika

Pertanyaan


[tex] \frac{4}{2x - 3} + \frac{5}{x + 2} = [/tex]
[tex] \frac{2a}{a + 5} - \frac{4a}{a - 3} = [/tex]

tolong dijawab

2 Jawaban

  • [tex] \frac{4}{2x - 3} + \frac{5}{x + 2} \\ = \frac{4(x+2)}{(2x-3)(x+2)} + \frac{5(2x-3)}{(x+2)(2x-3)} \\ = \frac{4x + 8 + 10x - 15}{2x^2 + x - 6} \\ = \frac{14x - 7}{2x^2 + x - 6} [/tex]

    [tex] \frac{2a}{a + 5} - \frac{4a}{a - 3} \\ = \frac{2a(a - 3)}{(a + 5)(a - 3)} - \frac{4a(a + 5)}{(a - 3)(a + 5)} \\ = \frac{2a^2 - 6a - (4a^2 + 20a)}{a^2 + 2a - 15} \\ = \frac{-2a^2 - 26a}{a^2 + 2a - 15} [/tex]
  • [tex] \frac{4}{2x - 3} + \frac{5}{ x + 2} \\ = \frac{4(x + 2) + 5(2x - 3)}{(2x - 3) \times (x + 2)} \\ = \frac{4x + 8 + 10x - 15}{2 {x}^{2} + 4x - 3x - 6 } \\ = \frac{14x - 7}{2 {x}^{2} + x - 6 }

    [/tex]
    [tex] \frac{2a}{a + 5} - \frac{4a}{a - 3} \\ = \frac {2a(a - 3) - 4a(a + 5)}{(a + 5) \times (a - 3)} \\ = \frac{2 {a}^{2} - 6a - 4 {a}^{2} - 20a}{ {a}^{2} - 3a + 5a - 15 } \\ = \frac{ - 2 {a}^{2} - 26a}{ {a}^{2} + 2a - 15 } \\ = - \frac{2 {a}^{2} + 26a}{ {a}^{2} + 2a - 15 } [/tex]
    Semoga membantu

Pertanyaan Lainnya